zuai-logo
zuai-logo
  1. AP Calculus
FlashcardFlashcard
Study GuideStudy GuideQuestion BankQuestion BankGlossaryGlossary

How to integrate ∫x5dx\int x^5 dx∫x5dx?

Apply the power rule: x5+15+1+C=x66+C\frac{x^{5+1}}{5+1} + C = \frac{x^6}{6} + C5+1x5+1​+C=6x6​+C

Flip to see [answer/question]
Flip to see [answer/question]
Revise later
SpaceTo flip
If confident

All Flashcards

How to integrate ∫x5dx\int x^5 dx∫x5dx?

Apply the power rule: x5+15+1+C=x66+C\frac{x^{5+1}}{5+1} + C = \frac{x^6}{6} + C5+1x5+1​+C=6x6​+C

How to integrate ∫cos⁡(2x)dx\int \cos(2x) dx∫cos(2x)dx?

Use u-substitution: let u=2xu = 2xu=2x, then du=2dxdu = 2dxdu=2dx. So, 12∫cos⁡(u)du=12sin⁡(u)+C=12sin⁡(2x)+C\frac{1}{2} \int \cos(u) du = \frac{1}{2} \sin(u) + C = \frac{1}{2} \sin(2x) + C21​∫cos(u)du=21​sin(u)+C=21​sin(2x)+C

How to integrate ∫xx2+1dx\int \frac{x}{x^2 + 1} dx∫x2+1x​dx?

Use u-substitution: let u=x2+1u = x^2 + 1u=x2+1, then du=2xdxdu = 2x dxdu=2xdx. So, 12∫1udu=12ln⁡∣u∣+C=12ln⁡∣x2+1∣+C\frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln|x^2 + 1| + C21​∫u1​du=21​ln∣u∣+C=21​ln∣x2+1∣+C

How to integrate ∫e3xdx\int e^{3x} dx∫e3xdx?

Use u-substitution: let u=3xu = 3xu=3x, then du=3dxdu = 3dxdu=3dx. So, 13∫eudu=13eu+C=13e3x+C\frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{3x} + C31​∫eudu=31​eu+C=31​e3x+C

How to integrate ∫(x+1)2dx\int (x+1)^2 dx∫(x+1)2dx?

Expand and use power rule: ∫(x2+2x+1)dx=x33+x2+x+C\int (x^2 + 2x + 1) dx = \frac{x^3}{3} + x^2 + x + C∫(x2+2x+1)dx=3x3​+x2+x+C

How to integrate ∫1x+2dx\int \frac{1}{x+2} dx∫x+21​dx?

Use u-substitution: let u=x+2u = x+2u=x+2, then du=dxdu = dxdu=dx. So, ∫1udu=ln⁡∣u∣+C=ln⁡∣x+2∣+C\int \frac{1}{u} du = \ln|u| + C = \ln|x+2| + C∫u1​du=ln∣u∣+C=ln∣x+2∣+C

How to integrate ∫1x2+4dx\int \frac{1}{x^2 + 4} dx∫x2+41​dx?

Use inverse tangent: 12arctan⁡(x2)+C\frac{1}{2} \arctan(\frac{x}{2}) + C21​arctan(2x​)+C

How to integrate ∫x2+2x−3x−1dx\int \frac{x^2 + 2x - 3}{x - 1} dx∫x−1x2+2x−3​dx?

Perform long division: ∫(x+3)dx=x22+3x+C\int (x+3) dx = \frac{x^2}{2} + 3x + C∫(x+3)dx=2x2​+3x+C

How to integrate ∫sin⁡2(x)dx\int \sin^2(x) dx∫sin2(x)dx?

Use the identity sin⁡2(x)=1−cos⁡(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}sin2(x)=21−cos(2x)​. Then, ∫1−cos⁡(2x)2dx=x2−sin⁡(2x)4+C\int \frac{1 - \cos(2x)}{2} dx = \frac{x}{2} - \frac{\sin(2x)}{4} + C∫21−cos(2x)​dx=2x​−4sin(2x)​+C

How to integrate ∫19−x2dx\int \frac{1}{\sqrt{9 - x^2}} dx∫9−x2​1​dx?

Use inverse sine: arcsin⁡(x3)+C\arcsin(\frac{x}{3}) + Carcsin(3x​)+C

Define antiderivative.

A function whose derivative is the given function.

What is the constant of integration?

The arbitrary constant 'C' added to the antiderivative.

Define U-substitution.

A technique for simplifying integrals by substituting a part of the integrand with a new variable 'u'.

What is a perfect square trinomial?

A trinomial that can be factored into the square of a binomial.

Define indefinite integral.

The family of all antiderivatives of a function.

What is the power rule for antiderivatives?

A rule to find the antiderivative of a power function.

What is long division used for in integration?

Simplifying rational functions where the degree of the numerator is greater than or equal to the degree of the denominator.

What is 'completing the square'?

A technique used to rewrite a quadratic expression into a perfect square trinomial plus a constant.

What is the purpose of trigonometric identities in integration?

To simplify trigonometric integrals into forms that are easier to evaluate.

What is the antiderivative of 1x\frac{1}{x}x1​?

ln⁡∣x∣+C\ln|x| + Cln∣x∣+C

Power Rule for Antiderivatives

∫xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C∫xndx=n+1xn+1​+C, where n≠−1n \neq -1n=−1

Antiderivative of sin⁡(x)\sin(x)sin(x)

∫sin⁡(x)dx=−cos⁡(x)+C\int \sin(x) dx = -\cos(x) + C∫sin(x)dx=−cos(x)+C

Antiderivative of cos⁡(x)\cos(x)cos(x)

∫cos⁡(x)dx=sin⁡(x)+C\int \cos(x) dx = \sin(x) + C∫cos(x)dx=sin(x)+C

Antiderivative of tan⁡(x)\tan(x)tan(x)

∫tan⁡(x)dx=−ln⁡∣cos⁡(x)∣+C\int \tan(x) dx = -\ln|\cos(x)| + C∫tan(x)dx=−ln∣cos(x)∣+C

Antiderivative of cot⁡(x)\cot(x)cot(x)

∫cot⁡(x)dx=ln⁡∣sin⁡(x)∣+C\int \cot(x) dx = \ln|\sin(x)| + C∫cot(x)dx=ln∣sin(x)∣+C

Antiderivative of sec⁡(x)\sec(x)sec(x)

∫sec⁡(x)dx=ln⁡∣sec⁡(x)+tan⁡(x)∣+C\int \sec(x) dx = \ln|\sec(x) + \tan(x)| + C∫sec(x)dx=ln∣sec(x)+tan(x)∣+C

Antiderivative of csc⁡(x)\csc(x)csc(x)

∫csc⁡(x)dx=−ln⁡∣csc⁡(x)+cot⁡(x)∣+C\int \csc(x) dx = -\ln|\csc(x) + \cot(x)| + C∫csc(x)dx=−ln∣csc(x)+cot(x)∣+C

Antiderivative of exe^xex

∫exdx=ex+C\int e^x dx = e^x + C∫exdx=ex+C

Derivative of arcsin⁡(x)\arcsin(x)arcsin(x)

ddx(sin⁡−1(x))=11−x2\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}dxd​(sin−1(x))=1−x2​1​

Derivative of arctan⁡(x)\arctan(x)arctan(x)

ddx(tan⁡−1(x))=11+x2\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}dxd​(tan−1(x))=1+x21​