zuai-logo
zuai-logo
  1. AP Calculus
FlashcardFlashcard
Study GuideStudy GuideQuestion BankQuestion BankGlossaryGlossary

What is the formula to convert from polar to Cartesian coordinates for x?

x=rcos⁡θx = r \cos\thetax=rcosθ

Flip to see [answer/question]
Flip to see [answer/question]
Revise later
SpaceTo flip
If confident

All Flashcards

What is the formula to convert from polar to Cartesian coordinates for x?

x=rcos⁡θx = r \cos\thetax=rcosθ

What is the formula to convert from polar to Cartesian coordinates for y?

y=rsin⁡θy = r \sin\thetay=rsinθ

What is the formula to convert from Cartesian to polar coordinates for r?

r=x2+y2r = \sqrt{x^2 + y^2}r=x2+y2​

What is the formula for the slope of a tangent line dydx\frac{dy}{dx}dxdy​ in polar coordinates?

dydx=dydθdxdθ=rcos⁡θ+drdθ(sin⁡θ)−rsin⁡θ+drdθ(cos⁡θ)\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r\cos\theta + \frac{dr}{d\theta}(\sin\theta)}{-r\sin\theta + \frac{dr}{d\theta}(\cos\theta)}dxdy​=dθdx​dθdy​​=−rsinθ+dθdr​(cosθ)rcosθ+dθdr​(sinθ)​

Express dxdθ\frac{dx}{d\theta}dθdx​ in terms of r and θ\thetaθ.

dxdθ=ddθ(rcos⁡θ)\frac{dx}{d\theta} = \frac{d}{d\theta}(r\cos\theta)dθdx​=dθd​(rcosθ)

Express dydθ\frac{dy}{d\theta}dθdy​ in terms of r and θ\thetaθ.

dydθ=ddθ(rsin⁡θ)\frac{dy}{d\theta} = \frac{d}{d\theta}(r\sin\theta)dθdy​=dθd​(rsinθ)

If r=f(θ)r = f(\theta)r=f(θ), what is drdθ\frac{dr}{d\theta}dθdr​?

drdθ=f′(θ)\frac{dr}{d\theta} = f'(\theta)dθdr​=f′(θ)

What is the formula for finding the x-coordinate given r and θ?

x=rcos⁡(θ)x = r \cos(\theta)x=rcos(θ)

What is the formula for finding the y-coordinate given r and θ?

y=rsin⁡(θ)y = r \sin(\theta)y=rsin(θ)

How is dydx\frac{dy}{dx}dxdy​ calculated using parametric derivatives in polar coordinates?

dydx=dydθdxdθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}dxdy​=dθdx​dθdy​​

How to convert r=2sin⁡θr = 2\sin\thetar=2sinθ to Cartesian form?

Multiply both sides by r: r2=2rsin⁡θr^2 = 2r\sin\thetar2=2rsinθ. Substitute r2=x2+y2r^2 = x^2 + y^2r2=x2+y2 and y=rsin⁡θy = r\sin\thetay=rsinθ: x2+y2=2yx^2 + y^2 = 2yx2+y2=2y. Complete the square: x2+(y−1)2=1x^2 + (y-1)^2 = 1x2+(y−1)2=1.

How to find dydx\frac{dy}{dx}dxdy​ for r=θr = \thetar=θ?

Find x and y: x=rcos⁡θ=θcos⁡θx = r\cos\theta = \theta\cos\thetax=rcosθ=θcosθ, y=rsin⁡θ=θsin⁡θy = r\sin\theta = \theta\sin\thetay=rsinθ=θsinθ. Find dxdθ\frac{dx}{d\theta}dθdx​ and dydθ\frac{dy}{d\theta}dθdy​: dxdθ=cos⁡θ−θsin⁡θ\frac{dx}{d\theta} = \cos\theta - \theta\sin\thetadθdx​=cosθ−θsinθ, dydθ=sin⁡θ+θcos⁡θ\frac{dy}{d\theta} = \sin\theta + \theta\cos\thetadθdy​=sinθ+θcosθ. Then, dydx=sin⁡θ+θcos⁡θcos⁡θ−θsin⁡θ\frac{dy}{dx} = \frac{\sin\theta + \theta\cos\theta}{\cos\theta - \theta\sin\theta}dxdy​=cosθ−θsinθsinθ+θcosθ​.

How to find points closest/furthest from the origin for r=1+cos⁡θr = 1 + \cos\thetar=1+cosθ?

Find drdθ=−sin⁡θ\frac{dr}{d\theta} = -\sin\thetadθdr​=−sinθ. Set −sin⁡θ=0- \sin\theta = 0−sinθ=0, so θ=0,π\theta = 0, \piθ=0,π. Evaluate r at these points: r(0)=2r(0) = 2r(0)=2, r(π)=0r(\pi) = 0r(π)=0. The closest point is 0, the furthest is 2.

How do you find the equation of the tangent line to r=sin⁡(2θ)r = \sin(2\theta)r=sin(2θ) at θ=π4\theta = \frac{\pi}{4}θ=4π​?

  1. Find x and y in terms of θ: x=rcos⁡(θ)=sin⁡(2θ)cos⁡(θ)x = r\cos(\theta) = \sin(2\theta)\cos(\theta)x=rcos(θ)=sin(2θ)cos(θ), y=rsin⁡(θ)=sin⁡(2θ)sin⁡(θ)y = r\sin(\theta) = \sin(2\theta)\sin(\theta)y=rsin(θ)=sin(2θ)sin(θ). 2. Compute dxdθ\frac{dx}{d\theta}dθdx​ and dydθ\frac{dy}{d\theta}dθdy​. 3. Calculate dydx=dy/dθdx/dθ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}dxdy​=dx/dθdy/dθ​ at θ=π4\theta = \frac{\pi}{4}θ=4π​. 4. Find the (x, y) coordinates at θ=π4\theta = \frac{\pi}{4}θ=4π​. 5. Use the point-slope form to write the equation of the tangent line.

How do you convert the Cartesian equation x2+y2=9x^2 + y^2 = 9x2+y2=9 to polar form?

  1. Recall that r2=x2+y2r^2 = x^2 + y^2r2=x2+y2. 2. Substitute r2r^2r2 for x2+y2x^2 + y^2x2+y2 in the given equation. 3. The polar form is r2=9r^2 = 9r2=9, which simplifies to r=3r = 3r=3.

How to find the slope of the tangent line to r=2cos⁡(θ)r = 2\cos(\theta)r=2cos(θ) at θ=π3\theta = \frac{\pi}{3}θ=3π​?

  1. Find x and y: x=2cos⁡2(θ)x = 2\cos^2(\theta)x=2cos2(θ), y=2cos⁡(θ)sin⁡(θ)=sin⁡(2θ)y = 2\cos(\theta)\sin(\theta) = \sin(2\theta)y=2cos(θ)sin(θ)=sin(2θ). 2. Find dxdθ=−4cos⁡(θ)sin⁡(θ)=−2sin⁡(2θ)\frac{dx}{d\theta} = -4\cos(\theta)\sin(\theta) = -2\sin(2\theta)dθdx​=−4cos(θ)sin(θ)=−2sin(2θ) and dydθ=2cos⁡(2θ)\frac{dy}{d\theta} = 2\cos(2\theta)dθdy​=2cos(2θ). 3. Calculate dydx=2cos⁡(2θ)−2sin⁡(2θ)=−cot⁡(2θ)\frac{dy}{dx} = \frac{2\cos(2\theta)}{-2\sin(2\theta)} = -\cot(2\theta)dxdy​=−2sin(2θ)2cos(2θ)​=−cot(2θ). 4. Evaluate at θ=π3\theta = \frac{\pi}{3}θ=3π​: dydx=−cot⁡(2π3)=33\frac{dy}{dx} = -\cot(\frac{2\pi}{3}) = \frac{\sqrt{3}}{3}dxdy​=−cot(32π​)=33​​.

How do you find the x-coordinate of a point on the polar curve r=4sin⁡(θ)r = 4\sin(\theta)r=4sin(θ) when θ=π6\theta = \frac{\pi}{6}θ=6π​?

  1. Calculate r: r=4sin⁡(π6)=4∗12=2r = 4\sin(\frac{\pi}{6}) = 4 * \frac{1}{2} = 2r=4sin(6π​)=4∗21​=2. 2. Use the formula x=rcos⁡(θ)x = r\cos(\theta)x=rcos(θ): x=2cos⁡(π6)=2∗32=3x = 2\cos(\frac{\pi}{6}) = 2 * \frac{\sqrt{3}}{2} = \sqrt{3}x=2cos(6π​)=2∗23​​=3​.

How do you find the y-coordinate of a point on the polar curve r=2+cos⁡(θ)r = 2 + \cos(\theta)r=2+cos(θ) when θ=π2\theta = \frac{\pi}{2}θ=2π​?

  1. Calculate r: r=2+cos⁡(π2)=2+0=2r = 2 + \cos(\frac{\pi}{2}) = 2 + 0 = 2r=2+cos(2π​)=2+0=2. 2. Use the formula y=rsin⁡(θ)y = r\sin(\theta)y=rsin(θ): y=2sin⁡(π2)=2∗1=2y = 2\sin(\frac{\pi}{2}) = 2 * 1 = 2y=2sin(2π​)=2∗1=2.

How do you determine the values of θ\thetaθ where the polar curve r=3sin⁡(θ)r = 3\sin(\theta)r=3sin(θ) intersects the x-axis?

  1. The x-axis corresponds to y=0y = 0y=0. 2. Set y=rsin⁡(θ)=0y = r\sin(\theta) = 0y=rsin(θ)=0. 3. This implies sin⁡(θ)=0\sin(\theta) = 0sin(θ)=0 (since r is not always zero). 4. Solve for θ\thetaθ: θ=nπ\theta = n\piθ=nπ, where n is an integer.

How do you determine the values of θ\thetaθ where the polar curve r=2cos⁡(θ)r = 2\cos(\theta)r=2cos(θ) intersects the y-axis?

  1. The y-axis corresponds to x=0x = 0x=0. 2. Set x=rcos⁡(θ)=0x = r\cos(\theta) = 0x=rcos(θ)=0. 3. This implies cos⁡(θ)=0\cos(\theta) = 0cos(θ)=0 (since r is not always zero). 4. Solve for θ\thetaθ: θ=π2+nπ\theta = \frac{\pi}{2} + n\piθ=2π​+nπ, where n is an integer.

Compare converting polar to Cartesian vs. Cartesian to polar.

Polar to Cartesian: Uses x=rcos⁡θx = r\cos\thetax=rcosθ and y=rsin⁡θy = r\sin\thetay=rsinθ to eliminate r and θ. | Cartesian to Polar: Uses r=x2+y2r = \sqrt{x^2 + y^2}r=x2+y2​ and θ=arctan⁡(yx)\theta = \arctan(\frac{y}{x})θ=arctan(xy​) to eliminate x and y.

Compare finding drdθ\frac{dr}{d\theta}dθdr​ vs. dydx\frac{dy}{dx}dxdy​ in polar coordinates.

drdθ\frac{dr}{d\theta}dθdr​: Gives the rate of change of the distance from the origin. | dydx\frac{dy}{dx}dxdy​: Gives the slope of the tangent line in Cartesian coordinates.

Compare the graphs of r=acos⁡(θ)r = a\cos(\theta)r=acos(θ) and r=asin⁡(θ)r = a\sin(\theta)r=asin(θ).

r=acos⁡(θ)r = a\cos(\theta)r=acos(θ): Circle centered on the x-axis. | r=asin⁡(θ)r = a\sin(\theta)r=asin(θ): Circle centered on the y-axis.

Compare limacons with and without inner loops.

With Inner Loop: |a| < |b| in r=a+bcos⁡(θ)r = a + b\cos(\theta)r=a+bcos(θ) or r=a+bsin⁡(θ)r = a + b\sin(\theta)r=a+bsin(θ). | Without Inner Loop: |a| >= |b| in r=a+bcos⁡(θ)r = a + b\cos(\theta)r=a+bcos(θ) or r=a+bsin⁡(θ)r = a + b\sin(\theta)r=a+bsin(θ).

Compare polar coordinates to Cartesian coordinates.

Polar: Uses distance from origin (r) and angle (θ). | Cartesian: Uses horizontal (x) and vertical (y) distances from axes.

Compare the derivatives of r with respect to θ and y with respect to x in polar coordinates.

drdθ\frac{dr}{d\theta}dθdr​: Radial component, rate of change of distance from the origin. | dydx\frac{dy}{dx}dxdy​: Slope of the tangent line in Cartesian coordinates.

Compare using drdθ\frac{dr}{d\theta}dθdr​ to find max/min r values and using dydx\frac{dy}{dx}dxdy​ to find tangent lines.

drdθ\frac{dr}{d\theta}dθdr​ finds where the curve is furthest or closest to the origin. | dydx\frac{dy}{dx}dxdy​ finds the slope of the tangent line at a point on the curve.

Compare the shape of r=acos⁡(nθ)r = a\cos(n\theta)r=acos(nθ) when n is even vs. odd.

n is even: Rose curve with 2n petals. | n is odd: Rose curve with n petals.

Compare the use of sine and cosine in defining polar curves.

Sine: Often associated with vertical symmetry or curves aligned along the y-axis. | Cosine: Often associated with horizontal symmetry or curves aligned along the x-axis.

Compare the graphs of r=a+acos⁡(θ)r = a + a\cos(\theta)r=a+acos(θ) and r=a+asin⁡(θ)r = a + a\sin(\theta)r=a+asin(θ).

Both are cardioids. r=a+acos⁡(θ)r = a + a\cos(\theta)r=a+acos(θ): Symmetric about the x-axis. | r=a+asin⁡(θ)r = a + a\sin(\theta)r=a+asin(θ): Symmetric about the y-axis.