zuai-logo
zuai-logo
  1. AP Maths
FlashcardFlashcardStudy GuideStudy Guide
Question BankQuestion BankGlossaryGlossary

Limits

Sarah Miller

Sarah Miller

6 min read

Next Topic - Selecting Procedures for Determining Limits

Listen to this study note

Study Guide Overview

This study guide covers the Squeeze Theorem (definition, formal statement, and worked example) and Trigonometric Limits, including important theorems like lim(x→0) (sin x)/x = 1 and lim(x→0) (cos x - 1)/x = 0. It also provides worked examples for trigonometric limits, practice questions, a glossary of terms, and key takeaways.

#Study Notes: Squeeze Theorem and Trigonometric Limits

#Table of Contents

  1. Squeeze Theorem
    • Definition
    • Formal Statement
    • Worked Example
  2. Trigonometric Limits
    • Important Trigonometric Limit Theorems
    • Worked Examples
  3. Practice Questions
  4. Glossary
  5. Summary and Key Takeaways

#Squeeze Theorem

#Definition

The squeeze theorem is a method used to determine the limit of a function that is bounded above and below by two other functions. If these bounding functions converge to the same limit at a specific point, the bounded function will also converge to that same limit.

#Formal Statement

Let fff, ggg, and hhh be functions defined on an open interval containing aaa such that:

  • g(x)≤f(x)≤h(x)g(x) \le f(x) \le h(x)g(x)≤f(x)≤h(x) for all xxx in the interval, and
  • lim⁡x→ag(x)=lim⁡x→ah(x)=L\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = Llimx→a​g(x)=limx→a​h(x)=L

Then: lim⁡x→af(x)=L\lim_{x \to a} f(x) = Lx→alim​f(x)=L

#Worked Example

Let f(x)=x2−6x+13f(x) = x^2 - 6x + 13f(x)=x2−6x+13 and g(x)=6x−x2−5g(x) = 6x - x^2 - 5g(x)=6x−x2−5. It is known that g(x)≤f(x)g(x) \le f(x)g(x)≤f(x) for 0<x<60 < x < 60<x<6. Let h(x)h(x)h(x) be another function such that 0<x<60 < x < 60<x<6. Find lim⁡x→3h(x)\lim_{x \to 3} h(x)limx→3​h(x).

Solution: First, find the limits for f(x)f(x)f(x) and g(x)g(x)g(x) at x=3x = 3x=3 using substitution: lim⁡x→3f(x)=(3)2−6(3)+13=4\lim_{x \to 3} f(x) = (3)^2 - 6(3) + 13 = 4x→3lim​f(x)=(3)2−6(3)+13=4 lim⁡x→3g(x)=6(3)−(3)2−5=4\lim_{x \to 3} g(x) = 6(3) - (3)^2 - 5 = 4x→3lim​g(x)=6(3)−(3)2−5=4

Since both limits are equal and g(x)≤h(x)≤f(x)g(x) \le h(x) \le f(x)g(x)≤h(x)≤f(x) holds for 0<x<60 < x < 60<x<6, by the squeeze theorem: lim⁡x→3h(x)=4\lim_{x \to 3} h(x) = 4x→3lim​h(x)=4

#Trigonometric Limits

#Important Trigonometric Limit Theorems

You should know and be able to use the following trigonometric limit theorems: lim⁡x→0sin⁡xx=1\lim_{x \to 0} \frac{\sin x}{x} = 1x→0lim​xsinx​=1 lim⁡x→0cos⁡x−1x=0\lim_{x \to 0} \frac{\cos x - 1}{x} = 0x→0lim​xcosx−1​=0

These can be combined with properties of limits and algebraic manipulations to find other limits. Remember the trigonometric identity: sin⁡2x+cos⁡2x=1\sin^2 x + \cos^2 x = 1sin2x+cos2x=1 which can be rearranged to give: cos⁡2x=1−sin⁡2x\cos^2 x = 1 - \sin^2 xcos2x=1−sin2x or sin⁡2x=1−cos⁡2x\sin^2 x = 1 - \cos^2 xsin2x=1−cos2x

Exam Tip

You can use your graphing calculator to check any limit results that you work out analytically.

#Worked Examples

#Example 1

Find the limit: lim⁡x→01−cos⁡3xx\lim_{x \to 0} \frac{1 - \cos 3x}{x}x→0lim​x1−cos3x​

Solution: Substitution would give 00\frac{0}{0}00​, so start with algebraic manipulation: 1−cos⁡3xx=1−cos⁡3xx⋅33=3(1−cos⁡3x)3x\frac{1 - \cos 3x}{x} = \frac{1 - \cos 3x}{x} \cdot \frac{3}{3} = \frac{3(1 - \cos 3x)}{3x}x1−cos3x​=x1−cos3x​⋅33​=3x3(1−cos3x)​

Using the limit theorem: lim⁡x→0cos⁡3x−13x=0\lim_{x \to 0} \frac{\cos 3x - 1}{3x} = 0x→0lim​3xcos3x−1​=0

Thus: lim⁡x→03(1−cos⁡3x)3x=−3⋅0=0\lim_{x \to 0} \frac{3(1 - \cos 3x)}{3x} = -3 \cdot 0 = 0x→0lim​3x3(1−cos3x)​=−3⋅0=0

#Example 2

Find the limit: lim⁡x→0sin⁡7xsin⁡4x\lim_{x \to 0} \frac{\sin 7x}{\sin 4x}x→0lim​sin4xsin7x​

Solution: Substitution would give 00\frac{0}{0}00​, so start with algebraic manipulation: sin⁡7xsin⁡4x=sin⁡7xsin⁡4x⋅1x1x⋅7744=(7sin⁡7x7x)(4sin⁡4x4x)\frac{\sin 7x}{\sin 4x} = \frac{\sin 7x}{\sin 4x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \cdot \frac{\frac{7}{7}}{\frac{4}{4}} = \frac{\left( \frac{7 \sin 7x}{7x} \right)}{\left( \frac{4 \sin 4x}{4x} \right)}sin4xsin7x​=sin4xsin7x​⋅x1​x1​​⋅44​77​​=(4x4sin4x​)(7x7sin7x​)​

Using the limit theorem: lim⁡x→0sin⁡xx=1\lim_{x \to 0} \frac{\sin x}{x} = 1x→0lim​xsinx​=1

Thus: lim⁡x→0[(7sin⁡7x7x)(4sin⁡4x4x)]=74⋅lim⁡x→0sin⁡7x7xlim⁡x→0sin⁡4x4x=74⋅11=74\lim_{x \to 0} \left[ \frac{\left( \frac{7 \sin 7x}{7x} \right)}{\left( \frac{4 \sin 4x}{4x} \right)} \right] = \frac{7}{4} \cdot \frac{\lim_{x \to 0} \frac{\sin 7x}{7x}}{\lim_{x \to 0} \frac{\sin 4x}{4x}} = \frac{7}{4} \cdot \frac{1}{1} = \frac{7}{4}x→0lim​[(4x4sin4x​)(7x7sin7x​)​]=47​⋅limx→0​4xsin4x​limx→0​7xsin7x​​=47​⋅11​=47​

#Example 3

Find the limit: lim⁡x→01−cos⁡xx2\lim_{x \to 0} \frac{1 - \cos x}{x^2}x→0lim​x21−cosx​

Solution: Substitution would give 00\frac{0}{0}00​, so start with algebraic manipulation. Using the identity sin⁡2x=1−cos⁡2x\sin^2 x = 1 - \cos^2 xsin2x=1−cos2x: 1−cos⁡xx2=1−cos⁡xx2⋅1+cos⁡x1+cos⁡x=1−cos⁡2xx2(1+cos⁡x)=sin⁡2xx2(1+cos⁡x)=(sin⁡xx)21+cos⁡x\frac{1 - \cos x}{x^2} = \frac{1 - \cos x}{x^2} \cdot \frac{1 + \cos x}{1 + \cos x} = \frac{1 - \cos^2 x}{x^2 (1 + \cos x)} = \frac{\sin^2 x}{x^2 (1 + \cos x)} = \frac{\left( \frac{\sin x}{x} \right)^2}{1 + \cos x}x21−cosx​=x21−cosx​⋅1+cosx1+cosx​=x2(1+cosx)1−cos2x​=x2(1+cosx)sin2x​=1+cosx(xsinx​)2​

Using the limit theorem: lim⁡x→0sin⁡xx=1\lim_{x \to 0} \frac{\sin x}{x} = 1x→0lim​xsinx​=1

Thus: lim⁡x→0[(sin⁡xx)21+cos⁡x]=lim⁡x→0(sin⁡xx)2lim⁡x→0(1+cos⁡x)=121+1=12\lim_{x \to 0} \left[ \frac{\left( \frac{\sin x}{x} \right)^2}{1 + \cos x} \right] = \frac{\lim_{x \to 0} \left( \frac{\sin x}{x} \right)^2}{\lim_{x \to 0} (1 + \cos x)} = \frac{1^2}{1 + 1} = \frac{1}{2}x→0lim​[1+cosx(xsinx​)2​]=limx→0​(1+cosx)limx→0​(xsinx​)2​=1+112​=21​

#Practice Questions

Practice Question
  1. Use the squeeze theorem to find lim⁡x→0x2sin⁡(1x)\lim_{x \to 0} x^2 \sin \left( \frac{1}{x} \right)limx→0​x2sin(x1​).
Practice Question
  1. Prove the limit lim⁡x→0sin⁡xx=1\lim_{x \to 0} \frac{\sin x}{x} = 1limx→0​xsinx​=1 using the squeeze theorem.
Practice Question
  1. Find lim⁡x→0sin⁡5xx\lim_{x \to 0} \frac{\sin 5x}{x}limx→0​xsin5x​.
Practice Question
  1. Evaluate lim⁡x→0x−sin⁡xx3\lim_{x \to 0} \frac{x - \sin x}{x^3}limx→0​x3x−sinx​.

#Glossary

  • Squeeze Theorem: A method for finding the limit of a function by bounding it between two other functions that have the same limit.
  • Trigonometric Limit Theorems: Theorems involving limits of trigonometric functions, such as lim⁡x→0sin⁡xx=1\lim_{x \to 0} \frac{\sin x}{x} = 1limx→0​xsinx​=1.
  • Algebraic Manipulation: The process of rearranging and simplifying expressions to make limits easier to evaluate.

#Summary and Key Takeaways

#Summary

  • The squeeze theorem is a powerful tool for determining the limits of functions bounded between two other functions.
  • Key trigonometric limit theorems are essential for solving limits involving trigonometric functions.
  • Algebraic manipulation and trigonometric identities can greatly simplify the process of finding limits.

#Key Takeaways

  • Use the squeeze theorem when a function is bounded by two other functions with known limits.
  • Remember the important trigonometric limit theorems: lim⁡x→0sin⁡xx=1\lim_{x \to 0} \frac{\sin x}{x} = 1limx→0​xsinx​=1 and lim⁡x→0cos⁡x−1x=0\lim_{x \to 0} \frac{\cos x - 1}{x} = 0limx→0​xcosx−1​=0.
  • Algebraic manipulation, combined with these theorems, can help solve a wide range of limit problems.
Exam Tip

Always justify your answers by referencing the appropriate theorems and showing your work clearly.

Explore more resources

FlashcardFlashcard

Flashcard

Continute to Flashcard

Question BankQuestion Bank

Question Bank

Continute to Question Bank

Mock ExamMock Exam

Mock Exam

Continute to Mock Exam

Feedback stars icon

How are we doing?

Give us your feedback and let us know how we can improve

Previous Topic - Evaluating Limits Numerically & GraphicallyNext Topic - Selecting Procedures for Determining Limits

Question 1 of 8

If g(x)=x2+2g(x) = x^2 + 2g(x)=x2+2 and h(x)=4x−2h(x) = 4x - 2h(x)=4x−2, and it's known that g(x)≤f(x)≤h(x)g(x) \le f(x) \le h(x)g(x)≤f(x)≤h(x) for 1<x<31 < x < 31<x<3, and lim⁡x→2g(x)=6\lim_{x \to 2} g(x) = 6limx→2​g(x)=6 and lim⁡x→2h(x)=6\lim_{x \to 2} h(x) = 6limx→2​h(x)=6, what is lim⁡x→2f(x)\lim_{x \to 2} f(x)limx→2​f(x)? 🤔

2

4

6

8