zuai-logo
zuai-logo
  1. AP Calculus
FlashcardFlashcard
Study GuideStudy GuideQuestion BankQuestion BankGlossaryGlossary

How to find the derivative of y=sin⁡(x2)y = \sin(x^2)y=sin(x2)?

  1. Identify inner (u=x2u = x^2u=x2) and outer (y=sin⁡(u)y = \sin(u)y=sin(u)) functions. 2. Find dydu=cos⁡(u)\frac{dy}{du} = \cos(u)dudy​=cos(u). 3. Find dudx=2x\frac{du}{dx} = 2xdxdu​=2x. 4. Multiply: dydx=cos⁡(x2)⋅2x=2xcos⁡(x2)\frac{dy}{dx} = \cos(x^2) \cdot 2x = 2x\cos(x^2)dxdy​=cos(x2)⋅2x=2xcos(x2)
Flip to see [answer/question]
Flip to see [answer/question]
Revise later
SpaceTo flip
If confident

All Flashcards

How to find the derivative of y=sin⁡(x2)y = \sin(x^2)y=sin(x2)?

  1. Identify inner (u=x2u = x^2u=x2) and outer (y=sin⁡(u)y = \sin(u)y=sin(u)) functions. 2. Find dydu=cos⁡(u)\frac{dy}{du} = \cos(u)dudy​=cos(u). 3. Find dudx=2x\frac{du}{dx} = 2xdxdu​=2x. 4. Multiply: dydx=cos⁡(x2)⋅2x=2xcos⁡(x2)\frac{dy}{dx} = \cos(x^2) \cdot 2x = 2x\cos(x^2)dxdy​=cos(x2)⋅2x=2xcos(x2)

How to differentiate f(x)=exf(x) = e^{\sqrt{x}}f(x)=ex​?

  1. Inner: u=xu = \sqrt{x}u=x​, Outer: f(u)=euf(u) = e^uf(u)=eu. 2. f′(u)=euf'(u) = e^uf′(u)=eu. 3. u′(x)=12xu'(x) = \frac{1}{2\sqrt{x}}u′(x)=2x​1​. 4. f′(x)=ex⋅12x=ex2xf'(x) = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} = \frac{e^{\sqrt{x}}}{2\sqrt{x}}f′(x)=ex​⋅2x​1​=2x​ex​​

Steps to differentiate y=(3x2+1)5y = (3x^2 + 1)^5y=(3x2+1)5 using the Chain Rule?

  1. Identify inner function u=3x2+1u = 3x^2 + 1u=3x2+1 and outer function y=u5y = u^5y=u5. 2. Find dudx=6x\frac{du}{dx} = 6xdxdu​=6x. 3. Find dydu=5u4\frac{dy}{du} = 5u^4dudy​=5u4. 4. Multiply: dydx=5(3x2+1)4cdot6x=30x(3x2+1)4\frac{dy}{dx} = 5(3x^2 + 1)^4 cdot 6x = 30x(3x^2 + 1)^4dxdy​=5(3x2+1)4cdot6x=30x(3x2+1)4.

How to find the derivative of y=cos⁡2(x)y = \cos^2(x)y=cos2(x)?

  1. Rewrite as y=(cos⁡(x))2y = (\cos(x))^2y=(cos(x))2. 2. Inner: u=cos⁡(x)u = \cos(x)u=cos(x), Outer: y=u2y = u^2y=u2. 3. dudx=−sin⁡(x)\frac{du}{dx} = -\sin(x)dxdu​=−sin(x). 4. dydu=2u\frac{dy}{du} = 2ududy​=2u. 5. dydx=2cos⁡(x)cdot−sin⁡(x)=−2sin⁡(x)cos⁡(x)\frac{dy}{dx} = 2\cos(x) cdot -\sin(x) = -2\sin(x)\cos(x)dxdy​=2cos(x)cdot−sin(x)=−2sin(x)cos(x)

How do you differentiate y=sin⁡(x)y = \sqrt{\sin(x)}y=sin(x)​?

  1. Inner: u=sin⁡(x)u = \sin(x)u=sin(x), Outer: y=uy = \sqrt{u}y=u​. 2. dudx=cos⁡(x)\frac{du}{dx} = \cos(x)dxdu​=cos(x). 3. dydu=12u\frac{dy}{du} = \frac{1}{2\sqrt{u}}dudy​=2u​1​. 4. dydx=12sin⁡(x)⋅cos⁡(x)=cos⁡(x)2sin⁡(x)\frac{dy}{dx} = \frac{1}{2\sqrt{\sin(x)}} \cdot \cos(x) = \frac{\cos(x)}{2\sqrt{\sin(x)}}dxdy​=2sin(x)​1​⋅cos(x)=2sin(x)​cos(x)​

How to differentiate y=e5x2+2xy = e^{5x^2 + 2x}y=e5x2+2x?

  1. Identify inner function u=5x2+2xu = 5x^2 + 2xu=5x2+2x and outer function y=euy = e^uy=eu. 2. Find dudx=10x+2\frac{du}{dx} = 10x + 2dxdu​=10x+2. 3. Find dydu=eu\frac{dy}{du} = e^ududy​=eu. 4. Multiply: dydx=e5x2+2xcdot(10x+2)=(10x+2)e5x2+2x\frac{dy}{dx} = e^{5x^2 + 2x} cdot (10x + 2) = (10x + 2)e^{5x^2 + 2x}dxdy​=e5x2+2xcdot(10x+2)=(10x+2)e5x2+2x.

Steps to find the derivative of y=ln⁡(x3+1)y = \ln(x^3 + 1)y=ln(x3+1)?

  1. Inner: u=x3+1u = x^3 + 1u=x3+1, Outer: y=ln⁡(u)y = \ln(u)y=ln(u). 2. dudx=3x2\frac{du}{dx} = 3x^2dxdu​=3x2. 3. dydu=1u\frac{dy}{du} = \frac{1}{u}dudy​=u1​. 4. dydx=1x3+1cdot3x2=3x2x3+1\frac{dy}{dx} = \frac{1}{x^3 + 1} cdot 3x^2 = \frac{3x^2}{x^3 + 1}dxdy​=x3+11​cdot3x2=x3+13x2​.

How to differentiate y=(x2+3x−1)2y = (x^2 + 3x - 1)^2y=(x2+3x−1)2?

  1. Inner: u=x2+3x−1u = x^2 + 3x - 1u=x2+3x−1, Outer: y=u2y = u^2y=u2. 2. dudx=2x+3\frac{du}{dx} = 2x + 3dxdu​=2x+3. 3. dydu=2u\frac{dy}{du} = 2ududy​=2u. 4. dydx=2(x2+3x−1)cdot(2x+3)\frac{dy}{dx} = 2(x^2 + 3x - 1) cdot (2x + 3)dxdy​=2(x2+3x−1)cdot(2x+3).

How to differentiate y=4(5x3+2x2+6)2y = 4(5x^3 + 2x^2 + 6)^2y=4(5x3+2x2+6)2?

  1. Inner: u=5x3+2x2+6u = 5x^3 + 2x^2 + 6u=5x3+2x2+6, Outer: y=4u2y = 4u^2y=4u2. 2. dudx=15x2+4x\frac{du}{dx} = 15x^2 + 4xdxdu​=15x2+4x. 3. dydu=8u\frac{dy}{du} = 8ududy​=8u. 4. dydx=8(5x3+2x2+6)cdot(15x2+4x)\frac{dy}{dx} = 8(5x^3 + 2x^2 + 6) cdot (15x^2 + 4x)dxdy​=8(5x3+2x2+6)cdot(15x2+4x).

How to differentiate y=7x2y = \sqrt{7x^2}y=7x2​?

  1. Inner: u=7x2u = 7x^2u=7x2, Outer: y=uy = \sqrt{u}y=u​. 2. dudx=14x\frac{du}{dx} = 14xdxdu​=14x. 3. dydu=12u−12=12(7x2)−12\frac{dy}{du} = \frac{1}{2}u^{-\frac{1}{2}} = \frac{1}{2}(7x^2)^{-\frac{1}{2}}dudy​=21​u−21​=21​(7x2)−21​. 4. dydx=12(7x2)−12cdot(14x)\frac{dy}{dx} = \frac{1}{2}(7x^2)^{-\frac{1}{2}} cdot (14x)dxdy​=21​(7x2)−21​cdot(14x).

State the Chain Rule Theorem.

If ggg is differentiable at xxx and fff is differentiable at g(x)g(x)g(x), then the composite function F(x)=f(g(x))F(x) = f(g(x))F(x)=f(g(x)) is differentiable at xxx and F′(x)F'(x)F′(x) is given by F′(x)=f′(g(x))⋅g′(x)F'(x) = f'(g(x)) \cdot g'(x)F′(x)=f′(g(x))⋅g′(x).

What is the significance of the Chain Rule Theorem?

It provides a formal justification for the method of differentiating composite functions, ensuring that the derivative is calculated correctly by accounting for the rates of change of both the inner and outer functions.

How does the Chain Rule Theorem relate to the concept of differentiability?

The theorem requires that both the inner function g(x)g(x)g(x) and the outer function f(x)f(x)f(x) be differentiable at their respective points for the composite function to be differentiable.

What conditions must be met to apply the Chain Rule Theorem?

ggg must be differentiable at xxx, and fff must be differentiable at g(x)g(x)g(x).

How is the Chain Rule Theorem used in related rates problems?

It allows us to relate the rates of change of different variables in an equation by differentiating with respect to time and applying the Chain Rule to each term, ensuring that all rates of change are properly accounted for.

How does the Chain Rule Theorem apply when differentiating inverse functions?

If fff and ggg are inverse functions, then f(g(x))=xf(g(x)) = xf(g(x))=x. Differentiating both sides using the Chain Rule gives f′(g(x))⋅g′(x)=1f'(g(x)) \cdot g'(x) = 1f′(g(x))⋅g′(x)=1, which can be used to find the derivative of the inverse function.

Describe a scenario where the Chain Rule Theorem is essential.

When dealing with complex functions involving multiple layers of composition, such as y=sin⁡(ex2)y = \sin(e^{x^2})y=sin(ex2), the Chain Rule Theorem is essential for systematically differentiating each layer and obtaining the correct derivative.

Explain how the Chain Rule Theorem ensures the correct derivative of a composite function.

It ensures the correct derivative by accounting for the rates of change of both the inner and outer functions and multiplying them together, providing a complete picture of how the composite function changes with respect to its input.

How does the Chain Rule Theorem relate to the concept of local linearity?

The Chain Rule Theorem relies on the concept of local linearity, where differentiable functions can be approximated by linear functions at a point, allowing us to break down the differentiation of composite functions into smaller, linear approximations.

Explain the connection between the Chain Rule Theorem and the derivative of a power function.

When differentiating a power function where the base is a function of xxx, such as y=[f(x)]ny = [f(x)]^ny=[f(x)]n, the Chain Rule Theorem is used to account for the derivative of the base, resulting in y′=n[f(x)]n−1⋅f′(x)y' = n[f(x)]^{n-1} \cdot f'(x)y′=n[f(x)]n−1⋅f′(x).

What is the Chain Rule formula (Leibniz notation)?

dydx=dydu⋅dudx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}dxdy​=dudy​⋅dxdu​

What is the Chain Rule formula (function notation)?

ddx(f(g(x)))=f′(g(x))⋅g′(x)\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)dxd​(f(g(x)))=f′(g(x))⋅g′(x)

If y=uny = u^ny=un, what is dydx\frac{dy}{dx}dxdy​ using the Chain Rule?

dydx=n⋅un−1⋅dudx\frac{dy}{dx} = n \cdot u^{n-1} \cdot \frac{du}{dx}dxdy​=n⋅un−1⋅dxdu​

If y=eg(x)y = e^{g(x)}y=eg(x), what is dydx\frac{dy}{dx}dxdy​?

dydx=eg(x)⋅g′(x)\frac{dy}{dx} = e^{g(x)} \cdot g'(x)dxdy​=eg(x)⋅g′(x)

If y=sin⁡(g(x))y = \sin(g(x))y=sin(g(x)), what is dydx\frac{dy}{dx}dxdy​?

dydx=cos⁡(g(x))⋅g′(x)\frac{dy}{dx} = \cos(g(x)) \cdot g'(x)dxdy​=cos(g(x))⋅g′(x)

If y=cos⁡(g(x))y = \cos(g(x))y=cos(g(x)), what is dydx\frac{dy}{dx}dxdy​?

dydx=−sin⁡(g(x))⋅g′(x)\frac{dy}{dx} = -\sin(g(x)) \cdot g'(x)dxdy​=−sin(g(x))⋅g′(x)

If y=ln⁡(g(x))y = \ln(g(x))y=ln(g(x)), what is dydx\frac{dy}{dx}dxdy​?

dydx=1g(x)⋅g′(x)=g′(x)g(x)\frac{dy}{dx} = \frac{1}{g(x)} \cdot g'(x) = \frac{g'(x)}{g(x)}dxdy​=g(x)1​⋅g′(x)=g(x)g′(x)​

If y=[f(x)]ny = [f(x)]^ny=[f(x)]n, what is y′y'y′?

y′=n[f(x)]n−1cdotf′(x)y' = n[f(x)]^{n-1} cdot f'(x)y′=n[f(x)]n−1cdotf′(x)

If y=tan⁡(g(x))y = \tan(g(x))y=tan(g(x)), what is dydx\frac{dy}{dx}dxdy​?

dydx=sec⁡2(g(x))⋅g′(x)\frac{dy}{dx} = \sec^2(g(x)) \cdot g'(x)dxdy​=sec2(g(x))⋅g′(x)

If y=g(x)y = \sqrt{g(x)}y=g(x)​, what is dydx\frac{dy}{dx}dxdy​?

dydx=g′(x)2g(x)\frac{dy}{dx} = \frac{g'(x)}{2\sqrt{g(x)}}dxdy​=2g(x)​g′(x)​