zuai-logo

How do you evaluate 0exdx\int_0^\infty e^{-x} dx?

  1. Express as a limit: limb0bexdx\lim_{b \to \infty} \int_0^b e^{-x} dx. 2) Evaluate the integral: limb[ex]0b=limb(eb+e0)\lim_{b \to \infty} [-e^{-x}]_0^b = \lim_{b \to \infty} (-e^{-b} + e^0). 3) Evaluate the limit: limb(eb+1)=1\lim_{b \to \infty} (-e^{-b} + 1) = 1. 4) The integral converges to 1.
Flip to see [answer/question]
Flip to see [answer/question]

All Flashcards

How do you evaluate 0exdx\int_0^\infty e^{-x} dx?

  1. Express as a limit: limb0bexdx\lim_{b \to \infty} \int_0^b e^{-x} dx. 2) Evaluate the integral: limb[ex]0b=limb(eb+e0)\lim_{b \to \infty} [-e^{-x}]_0^b = \lim_{b \to \infty} (-e^{-b} + e^0). 3) Evaluate the limit: limb(eb+1)=1\lim_{b \to \infty} (-e^{-b} + 1) = 1. 4) The integral converges to 1.

How do you evaluate 11x2dx\int_1^\infty \frac{1}{x^2} dx?

  1. Express as a limit: limb1b1x2dx\lim_{b \to \infty} \int_1^b \frac{1}{x^2} dx. 2) Evaluate the integral: limb[1x]1b=limb(1b+1)\lim_{b \to \infty} [-\frac{1}{x}]_1^b = \lim_{b \to \infty} (-\frac{1}{b} + 1). 3) Evaluate the limit: limb(1b+1)=1\lim_{b \to \infty} (-\frac{1}{b} + 1) = 1. 4) The integral converges to 1.

How do you evaluate 011xdx\int_0^1 \frac{1}{\sqrt{x}} dx?

  1. Express as a limit: lima0+a11xdx\lim_{a \to 0^+} \int_a^1 \frac{1}{\sqrt{x}} dx. 2) Evaluate the integral: lima0+[2x]a1=lima0+(22a)\lim_{a \to 0^+} [2\sqrt{x}]_a^1 = \lim_{a \to 0^+} (2 - 2\sqrt{a}). 3) Evaluate the limit: lima0+(22a)=2\lim_{a \to 0^+} (2 - 2\sqrt{a}) = 2. 4) The integral converges to 2.

How do you evaluate 11xdx\int_1^\infty \frac{1}{x} dx?

  1. Express as a limit: limb1b1xdx\lim_{b \to \infty} \int_1^b \frac{1}{x} dx. 2) Evaluate the integral: limb[lnx]1b=limb(ln(b)ln(1))\lim_{b \to \infty} [\ln|x|]_1^b = \lim_{b \to \infty} (\ln(b) - \ln(1)). 3) Evaluate the limit: limb(ln(b)0)=\lim_{b \to \infty} (\ln(b) - 0) = \infty. 4) The integral diverges.

How do you evaluate 0xexdx\int_{-\infty}^0 xe^x dx?

  1. Express as a limit: limaa0xexdx\lim_{a \to -\infty} \int_a^0 xe^x dx. 2) Integrate by parts: u=x,dv=exdxu=x, dv=e^x dx, so du=dx,v=exdu=dx, v=e^x. Then xexdx=xexexdx=xexex+C\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C. 3) Evaluate the integral: lima[xexex]a0=lima[(0e0)(aeaea)]=lima[1aea+ea]\lim_{a \to -\infty} [xe^x - e^x]_a^0 = \lim_{a \to -\infty} [(0 - e^0) - (ae^a - e^a)] = \lim_{a \to -\infty} [-1 - ae^a + e^a]. 4) Evaluate the limit: lima[1aea+ea]=10+0=1\lim_{a \to -\infty} [-1 - ae^a + e^a] = -1 - 0 + 0 = -1. 5) The integral converges to -1.

How do you evaluate 11+x2dx\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx?

  1. Split the integral: 11+x2dx=011+x2dx+011+x2dx\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \int_{-\infty}^{0} \frac{1}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{1+x^2} dx. 2) Express as limits: limaa011+x2dx+limb0b11+x2dx\lim_{a \to -\infty} \int_a^0 \frac{1}{1+x^2} dx + \lim_{b \to \infty} \int_0^b \frac{1}{1+x^2} dx. 3) Evaluate the integral: lima[arctan(x)]a0+limb[arctan(x)]0b=lima[arctan(0)arctan(a)]+limb[arctan(b)arctan(0)]\lim_{a \to -\infty} [\arctan(x)]_a^0 + \lim_{b \to \infty} [\arctan(x)]_0^b = \lim_{a \to -\infty} [\arctan(0) - \arctan(a)] + \lim_{b \to \infty} [\arctan(b) - \arctan(0)]. 4) Evaluate the limits: [0(π2)]+[π20]=π2+π2=π[0 - (-\frac{\pi}{2})] + [\frac{\pi}{2} - 0] = \frac{\pi}{2} + \frac{\pi}{2} = \pi. 5) The integral converges to π\pi.

How do you evaluate 21x(x1)dx\int_2^{\infty} \frac{1}{x(x-1)} dx?

  1. Express as a limit: limb2b1x(x1)dx\lim_{b \to \infty} \int_2^b \frac{1}{x(x-1)} dx. 2) Partial fraction decomposition: 1x(x1)=Ax+Bx1\frac{1}{x(x-1)} = \frac{A}{x} + \frac{B}{x-1}. Solving gives A=1A = -1 and B=1B = 1. So, 1x(x1)=1x+1x1\frac{1}{x(x-1)} = \frac{-1}{x} + \frac{1}{x-1}. 3) Evaluate the integral: limb2b(1x+1x1)dx=limb[lnx+lnx1]2b=limb[lnx1x]2b=limb[lnb1bln212]\lim_{b \to \infty} \int_2^b (\frac{-1}{x} + \frac{1}{x-1}) dx = \lim_{b \to \infty} [-\ln|x| + \ln|x-1|]_2^b = \lim_{b \to \infty} [\ln|\frac{x-1}{x}|]_2^b = \lim_{b \to \infty} [\ln|\frac{b-1}{b}| - \ln|\frac{2-1}{2}|]. 4) Evaluate the limit: limb[lnb1bln(12)]=ln(1)ln(12)=0(ln(2))=ln(2)\lim_{b \to \infty} [\ln|\frac{b-1}{b}| - \ln(\frac{1}{2})] = \ln(1) - \ln(\frac{1}{2}) = 0 - (-\ln(2)) = \ln(2). 5) The integral converges to ln(2)\ln(2).

How do you evaluate 0cos(x)dx\int_0^{\infty} cos(x) dx?

  1. Express as a limit: limb0bcos(x)dx\lim_{b \to \infty} \int_0^b cos(x) dx. 2) Evaluate the integral: limb[sin(x)]0b=limb(sin(b)sin(0))\lim_{b \to \infty} [sin(x)]_0^b = \lim_{b \to \infty} (sin(b) - sin(0)). 3) Evaluate the limit: limb(sin(b)0)\lim_{b \to \infty} (sin(b) - 0). Since sin(b)sin(b) oscillates between -1 and 1 as b approaches infinity, the limit does not exist. 4) The integral diverges.

How do you evaluate 031x2dx\int_0^{3} \frac{1}{x-2} dx?

  1. Split the integral at the discontinuity: 031x2dx=021x2dx+231x2dx\int_0^{3} \frac{1}{x-2} dx = \int_0^{2} \frac{1}{x-2} dx + \int_2^{3} \frac{1}{x-2} dx. 2) Express as limits: limb20b1x2dx+lima2+a31x2dx\lim_{b \to 2^-} \int_0^b \frac{1}{x-2} dx + \lim_{a \to 2^+} \int_a^3 \frac{1}{x-2} dx. 3) Evaluate the integral: limb2[lnx2]0b+lima2+[lnx2]a3=limb2[lnb2ln2]+lima2+[ln32lna2]=limb2[lnb2ln(2)]+lima2+[ln(1)lna2]\lim_{b \to 2^-} [\ln|x-2|]_0^b + \lim_{a \to 2^+} [\ln|x-2|]_a^3 = \lim_{b \to 2^-} [\ln|b-2| - \ln|-2|] + \lim_{a \to 2^+} [\ln|3-2| - \ln|a-2|] = \lim_{b \to 2^-} [\ln|b-2| - \ln(2)] + \lim_{a \to 2^+} [\ln(1) - \ln|a-2|]. 4) Evaluate the limits: Since limb2lnb2=\lim_{b \to 2^-} \ln|b-2| = -\infty and lima2+lna2=\lim_{a \to 2^+} \ln|a-2| = -\infty, both integrals diverge. 5) The integral diverges.

How do you evaluate 0x(1+x2)2dx\int_0^{\infty} \frac{x}{(1+x^2)^2} dx?

  1. Express as a limit: limb0bx(1+x2)2dx\lim_{b \to \infty} \int_0^b \frac{x}{(1+x^2)^2} dx. 2) Use u-substitution: Let u=1+x2u = 1+x^2, then du=2xdxdu = 2x dx, so xdx=12dux dx = \frac{1}{2} du. The integral becomes 121u2du=12u2du=12[1u]+C=12(1+x2)+C\frac{1}{2} \int \frac{1}{u^2} du = \frac{1}{2} \int u^{-2} du = \frac{1}{2} [-\frac{1}{u}] + C = -\frac{1}{2(1+x^2)} + C. 3) Evaluate the integral: limb[12(1+x2)]0b=limb[12(1+b2)(12(1+02))]=limb[12(1+b2)+12]\lim_{b \to \infty} [-\frac{1}{2(1+x^2)}]_0^b = \lim_{b \to \infty} [-\frac{1}{2(1+b^2)} - (-\frac{1}{2(1+0^2)})] = \lim_{b \to \infty} [-\frac{1}{2(1+b^2)} + \frac{1}{2}]. 4) Evaluate the limit: limb[12(1+b2)+12]=0+12=12\lim_{b \to \infty} [-\frac{1}{2(1+b^2)} + \frac{1}{2}] = 0 + \frac{1}{2} = \frac{1}{2}. 5) The integral converges to 12\frac{1}{2}.

How do you express an improper integral with an upper bound of infinity as a limit?

af(x),dx=limbabf(x),dx\int_a^\infty f(x) , dx = \lim_{b \to \infty} \int_a^b f(x) , dx

How do you express an improper integral with a lower bound of negative infinity as a limit?

bf(x),dx=limaabf(x),dx\int_{-\infty}^b f(x) , dx = \lim_{a \to -\infty} \int_a^b f(x) , dx

How do you express an improper integral with both bounds being infinity as a limit?

f(x),dx=limaacf(x),dx+limbcbf(x),dx\int_{-\infty}^\infty f(x) , dx = \lim_{a \to -\infty} \int_a^c f(x) , dx + \lim_{b \to \infty} \int_c^b f(x) , dx

What is the formula for the integral of 1x\frac{1}{x}?

1xdx=lnx+C\int \frac{1}{x} dx = \ln|x| + C

What is the formula for the integral of 1a2+x2\frac{1}{a^2+x^2}?

1a2+x2dx=1aarctan(xa)+C\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C

Give the general form of partial fraction decomposition.

P(x)Q(x)=Axa+Bxb+...\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b} + ...

What is the formula for integration by substitution?

f(g(x))g(x)dx=f(u)du\int f(g(x))g'(x)dx = \int f(u)du where u=g(x)u=g(x)

What is the formula for the integral of exe^x?

exdx=ex+C\int e^x dx = e^x + C

What is the formula for the integral of xnx^n?

xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, where n1n \neq -1

What is the formula for the integral of sin(x)sin(x)?

sin(x)dx=cos(x)+C\int sin(x) dx = -cos(x) + C

What does the First Fundamental Theorem of Calculus state?

If F(x)=axf(t)dtF(x) = \int_a^x f(t) dt, then F(x)=f(x)F'(x) = f(x).

How does the Squeeze Theorem relate to improper integrals?

If g(x)f(x)h(x)g(x) \leq f(x) \leq h(x) and ag(x)dx\int_a^\infty g(x) dx and ah(x)dx\int_a^\infty h(x) dx both converge to the same limit, then af(x)dx\int_a^\infty f(x) dx also converges to that limit.

What is the Comparison Theorem for Improper Integrals?

If 0f(x)g(x)0 \leq f(x) \leq g(x) for all xax \geq a, then if ag(x)dx\int_a^\infty g(x) dx converges, so does af(x)dx\int_a^\infty f(x) dx, and if af(x)dx\int_a^\infty f(x) dx diverges, so does ag(x)dx\int_a^\infty g(x) dx.

What is the Second Fundamental Theorem of Calculus?

abF(x)dx=F(b)F(a)\int_a^b F'(x) dx = F(b) - F(a)

How does the Limit Comparison Test relate to improper integrals?

If limxf(x)g(x)=c\lim_{x \to \infty} \frac{f(x)}{g(x)} = c, where 0<c<0 < c < \infty, then af(x)dx\int_a^\infty f(x) dx and ag(x)dx\int_a^\infty g(x) dx either both converge or both diverge.

What is the theorem for integration by parts?

udv=uvvdu\int u dv = uv - \int v du

What is the theorem for u-substitution?

f(g(x))g(x)dx=f(u)du\int f(g(x))g'(x)dx = \int f(u)du where u=g(x)u=g(x)

What is the theorem for partial fraction decomposition?

Decompose a rational function into simpler fractions that are easier to integrate.

What is the theorem for the integral of 1x\frac{1}{x}?

1xdx=lnx+C\int \frac{1}{x} dx = \ln|x| + C

What is the theorem for the integral of exe^x?

exdx=ex+C\int e^x dx = e^x + C