zuai-logo

Riemann Sums & Definite Integrals

David Brown

David Brown

6 min read

Listen to this study note

Study Guide Overview

This study guide covers evaluating definite integrals using the Fundamental Theorem of Calculus. It explains finding antiderivatives, applying upper and lower limits of integration, and the significance of the integrand's sign. The guide includes worked examples, practice questions, and a glossary of key terms like definite integral, indefinite integral, and antiderivative.

Evaluating Definite Integrals

Table of Contents

  1. Introduction
  2. Fundamental Theorem of Calculus
  3. Steps to Evaluate Definite Integrals
  4. Key Concepts
  5. Worked Examples
  6. Practice Questions
  7. Glossary
  8. Summary and Key Takeaways

Introduction

Evaluating a definite integral involves finding the numerical value of the integral over a specified interval. This process is crucial in calculus and has various applications in physics, engineering, and other fields.

Fundamental Theorem of Calculus

The first fundamental theorem of calculus states that if ff is a continuous function on the closed interval [a,b][a, b], then:

abf(x),dx=F(b)F(a){\int }_{a}^{b}f(x) , dx = F(b) - F(a)

where FF is an antiderivative of ff.

Steps to Evaluate Definite Integrals

  1. Find the Antiderivative: Determine the indefinite integral of the function f(x)f(x), denoted as F(x)F(x). f(x),dx=F(x)+C\int f(x) , dx = F(x) + C

  2. Apply the Limits: Use the evaluated antiderivative to compute the difference between its values at the upper and lower limits. abf(x),dx=[F(x)]ab=F(b)F(a){\int }_{a}^{b}f(x) , dx = {\left[F(x)\right]}_{a}^{b} = F(b) - F(a)

  3. Ignore the Constant of Integration: When evaluating definite integrals, the constant of integration cancels out. [F(x)+C]ab=(F(b)+C)(F(a)+C)=F(b)F(a){\left[F(x) + C\right]}_{a}^{b} = (F(b) + C) - (F(a) + C) = F(b) - F(a)

### Example 1: Basic Definite Integral Evaluate the definite integral _01x2dx{\int }\_{0}^{1} x^2 \, dx.

Solution:

  1. Find the antiderivative: x2,dx=13x3+C\int x^2 , dx = \frac{1}{3}x^3 + C

  2. Apply the limits: 01x2,dx=[13x3]01=13(13)13(03)=13{\int }_{0}^{1} x^2 , dx = \left[\frac{1}{3}x^3\right]_{0}^{1} = \frac{1}{3}(1^3) - \frac{1}{3}(0^3) = \frac{1}{3}

Key Concepts

Key Concept

Key Concept: Sign of the Integral

  • If f(x)>0f(x) > 0 on the interval [a,b][a, b], then abf(x),dx>0{\int }_{a}^{b} f(x) , dx > 0.
  • If f(x)<0f(x) < 0 on the interval [a,b][a, b], then abf(x),dx<0{\int }_{a}^{b} f(x) , dx < 0.
  • If f(x)f(x) changes sign on [a,b][a, b], the integral can be positive, negative, or zero.
### Note: Constants of Integration When calculating definite integrals, constants of integration do not affect the result since they cancel out during the evaluation step. ### Example 2: Trigonometric Integral Evaluate the definite integral _π3π4cos(x)dx{\int }\_{-\frac{\pi }{3}}^{\frac{\pi }{4}} \cos(x) \, dx.

Solution:

  1. Find the antiderivative: cos(x),dx=sin(x)+C\int \cos(x) , dx = \sin(x) + C

  2. Apply the limits: π3π4cos(x),dx=[sin(x)]π3π4=sin(π4)sin(π3)=22(32)=2+32\begin{array}{rcl} {\int }_{-\frac{\pi }{3}}^{\frac{\pi }{4}} \cos(x) , dx & = & \left[\sin(x)\right]_{-\frac{\pi }{3}}^{\frac{\pi }{4}} \\ & = & \sin\left(\frac{\pi }{4}\right) - \sin\left(-\frac{\pi }{3}\right) \\ & = & \frac{\sqrt{2}}{2} - \left(-\frac{\sqrt{3}}{2}\right) \\ & = & \frac{\sqrt{2} + \sqrt{3}}{2} \end{array}

Worked Examples

### Example 3: Polynomial Integral Consider the function ff defined by f(x)=_0xt2(2t)dtf(x) = {\int }\_{0}^{x} t^2 (2 - t) \, dt.

(a) Calculate f(2)f(2) and f(3)f(3) and confirm that f(3)<f(2)f(3) < f(2).

Solution:

  1. Expand the integrand and find the indefinite integral: t2(2t),dt=(2t2t3),dt=23t314t4+C\int t^2 (2 - t) , dt = \int (2t^2 - t^3) , dt = \frac{2}{3}t^3 - \frac{1}{4}t^4 + C

  2. Calculate f(2)f(2): f(2)=02t2(2t),dt=[23t314t4]02=(23(2)314(2)4)(23(0)314(0)4)=1634=43\begin{array}{rcl} f(2) & = & {\int }_{0}^{2} t^2 (2 - t) , dt \\ & = & \left[\frac{2}{3}t^3 - \frac{1}{4}t^4\right]_{0}^{2} \\ & = & \left(\frac{2}{3}(2)^3 - \frac{1}{4}(2)^4\right) - \left(\frac{2}{3}(0)^3 - \frac{1}{4}(0)^4\right) \\ & = & \frac{16}{3} - 4 \\ & = & \frac{4}{3} \end{array}

  3. Calculate f(3)f(3): f(3)=03t2(2t),dt=[23t314t4]03=(23(3)314(3)4)(23(0)314(0)4)=184814=634\begin{array}{rcl} f(3) & = & {\int }_{0}^{3} t^2 (2 - t) , dt \\ & = & \left[\frac{2}{3}t^3 - \frac{1}{4}t^4\right]_{0}^{3} \\ & = & \left(\frac{2}{3}(3)^3 - \frac{1}{4}(3)^4\right) - \left(\frac{2}{3}(0)^3 - \frac{1}{4}(0)^4\right) \\ & = & \frac{18}{4} - \frac{81}{4} \\ & = & -\frac{63}{4} \end{array}

  4. Confirm f(3)<f(2)f(3) < f(2): 634<43-\frac{63}{4} < \frac{4}{3}

### Example 4: Interpretation **(b) Explain why f(3)<f(2)f(3) < f(2) is true by considering the properties of the integrand.**

Solution:

  • The integrand t2(2t)t^2 (2 - t) is positive when 0t<20 \leq t < 2 because both t2t^2 and (2t)(2 - t) are positive.
  • The integrand becomes negative when t>2t > 2 because t2t^2 is positive, but (2t)(2 - t) is negative.
  • Therefore, the integral from 00 to 22 contributes a positive value, while the integral from 22 to 33 contributes a negative value, reducing the overall integral value for f(3)f(3).

Practice Questions

Practice Question

Question 1: Evaluate the definite integral 14(2x+3),dx{\int }_{1}^{4} (2x + 3) , dx.

Answer:

  1. Find the antiderivative: (2x+3),dx=x2+3x+C\int (2x + 3) , dx = x^2 + 3x + C

  2. Apply the limits: 14(2x+3),dx=[x2+3x]14=(16+12)(1+3)=244=20{\int }_{1}^{4} (2x + 3) , dx = \left[x^2 + 3x\right]_{1}^{4} = (16 + 12) - (1 + 3) = 24 - 4 = 20

Practice Question

Question 2: Evaluate the definite integral 02ex,dx{\int }_{0}^{2} e^x , dx.

Answer:

  1. Find the antiderivative: ex,dx=ex+C\int e^x , dx = e^x + C

  2. Apply the limits: 02ex,dx=[ex]02=e21{\int }_{0}^{2} e^x , dx = \left[e^x\right]_{0}^{2} = e^2 - 1

Glossary

  • Definite Integral: An integral with specified upper and lower limits, resulting in a numerical value.
  • Indefinite Integral: An integral without specified limits, representing a family of functions.
  • Antiderivative: A function F(x)F(x) such that F(x)=f(x)F'(x) = f(x).
  • Fundamental Theorem of Calculus: Relates the derivative of an integral to the original function.

Summary and Key Takeaways

  • The definite integral abf(x),dx{\int }_{a}^{b} f(x) , dx can be evaluated by finding the antiderivative F(x)F(x) and computing F(b)F(a)F(b) - F(a).
  • Constants of integration cancel out when evaluating definite integrals.
  • The sign of the integral depends on the sign of the integrand over the interval.
  • Practice with various functions to become proficient in evaluating definite integrals.

Key Takeaways

  1. Understand the Fundamental Theorem of Calculus: It is the backbone of evaluating definite integrals.
  2. Master Finding Antiderivatives: This skill is crucial for solving both definite and indefinite integrals.
  3. Apply Limits Correctly: Ensure you substitute the upper and lower limits accurately.
  4. Recognize the Significance of the Integrand's Sign: It affects the result of the integral.

By following these guidelines and practicing regularly, you will be well-prepared to evaluate definite integrals accurately and efficiently.

Question 1 of 9

What is the value of the definite integral 02x,dx\int_0^2 x , dx?

1

2

3

4