zuai-logo

Methods of Integration

Michael Green

Michael Green

6 min read

Listen to this study note

Study Guide Overview

This study guide covers completing the square for integrating expressions involving quadratic polynomials. It explains how to complete the square with and without leading coefficients. The guide also demonstrates using completing the square to apply standard integrals involving arctan and arcsin, provides worked examples and practice questions, and includes a glossary of key terms.

Integration Using Completing the Square

Table of Contents

  1. What is Completing the Square?
  2. Integrating Using Completing the Square
  3. Worked Example
  4. Practice Questions
  5. Glossary
  6. Summary and Key Takeaways

What is Completing the Square?

Introduction

Completing the square is a method used to rewrite quadratic expressions in a way that makes them easier to manipulate, particularly for solving equations and integrating.

Quadratic Expression

A quadratic expression is of the form: ax2+bx+ca{x}^{2} + bx + c

Simple Version of Completing the Square

For a quadratic expression without a leading coefficient: x2+bx+c=(x+b2)2+c(b2)2{x}^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + c - \left(\frac{b}{2}\right)^{2}

Example: x26x+2=(x3)2+2(3)2=(x3)27{x}^{2} - 6x + 2 = \left(x - 3\right)^{2} + 2 - \left(-3\right)^{2} = \left(x - 3\right)^{2} - 7

Completing the Square with a Leading Coefficient

When a coefficient is in front of the x2x^{2} term: ax2+bx+c=a(x+b2a)2+ca(b2a)2a{x}^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} + c - a\left(\frac{b}{2a}\right)^{2}

Example: 3x2+12x7=3(x+2)273(2)2=3(x+2)2193{x}^{2} + 12x - 7 = 3\left(x + 2\right)^{2} - 7 - 3\left(2\right)^{2} = 3\left(x + 2\right)^{2} - 19

Integrating Using Completing the Square

Standard Integrals

Recall the following standard integrals: 11x2,dx=arcsinx+C,1<x<1\int \frac{1}{\sqrt{1 - x^{2}}} , dx = \mathrm{arcsin}x + C, \quad -1 < x < 1 11+x2,dx=arctanx+C\int \frac{1}{1 + x^{2}} , dx = \mathrm{arctan}x + C

Using Completing the Square in Integration

Completing the square can recast integrals into forms where the above results can be applied. Sometimes, methods from the Integrals of Composite Functions study guide may also be needed.

Example: 1x26x+13dx\int \frac{1}{x^{2} - 6x + 13} \, dx
  1. Complete the square on the denominator: x26x+13=(x3)2+4x^{2} - 6x + 13 = \left(x - 3\right)^{2} + 4

  2. Rewrite the function to be integrated: 1x26x+13=14+(x3)2=1411+(x32)2\frac{1}{x^{2} - 6x + 13} = \frac{1}{4 + \left(x - 3\right)^{2}} = \frac{1}{4} \cdot \frac{1}{1 + \left(\frac{x - 3}{2}\right)^{2}}

  3. Recognize the standard form: This is now a multiple of 11+()2\frac{1}{1 + (\cdots)^{2}}. Hence, the integral will involve arctan()\mathrm{arctan}(\cdots).

  4. Differentiate arctan(x32)\mathrm{arctan}\left(\frac{x - 3}{2}\right) to check: ddx(arctan(x32))=11+(x32)212=1211+(x32)2\frac{d}{dx}\left(\mathrm{arctan}\left(\frac{x - 3}{2}\right)\right) = \frac{1}{1 + \left(\frac{x - 3}{2}\right)^{2}} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{1 + \left(\frac{x - 3}{2}\right)^{2}}

  5. Integrate: 1x26x+13,dx=1411+(x32)2,dx=12arctan(x32)+C\int \frac{1}{x^{2} - 6x + 13} , dx = \frac{1}{4} \int \frac{1}{1 + \left(\frac{x - 3}{2}\right)^{2}} , dx = \frac{1}{2} \mathrm{arctan}\left(\frac{x - 3}{2}\right) + C

Worked Example

Problem

Find the indefinite integral: 121x2+4x,dx\int \frac{1}{\sqrt{21 - x^{2} + 4x}} , dx

Solution

  1. Complete the square on the expression inside the square root: 21x2+4x=(x2)2+2521 - x^{2} + 4x = -\left(x - 2\right)^{2} + 25

  2. Rewrite the function to be integrated: 121x2+4x=125(x2)2=1511(x25)2\frac{1}{\sqrt{21 - x^{2} + 4x}} = \frac{1}{\sqrt{25 - \left(x - 2\right)^{2}}} = \frac{1}{5} \cdot \frac{1}{\sqrt{1 - \left(\frac{x - 2}{5}\right)^{2}}}

  3. Recognize the standard form: This is now a multiple of 11()2\frac{1}{\sqrt{1 - (\cdots)^{2}}}. Hence, the integral will involve arcsin()\mathrm{arcsin}(\cdots).

  4. Differentiate arcsin(x25)\mathrm{arcsin}\left(\frac{x - 2}{5}\right) to check: ddx(arcsin(x25))=11(x25)215\frac{d}{dx}\left(\mathrm{arcsin}\left(\frac{x - 2}{5}\right)\right) = \frac{1}{\sqrt{1 - \left(\frac{x - 2}{5}\right)^{2}}} \cdot \frac{1}{5}

  5. Integrate: 121x2+4x,dx=1511(x25)2,dx=arcsin(x25)+C\int \frac{1}{\sqrt{21 - x^{2} + 4x}} , dx = \int \frac{1}{5} \cdot \frac{1}{\sqrt{1 - \left(\frac{x - 2}{5}\right)^{2}}} , dx = \mathrm{arcsin}\left(\frac{x - 2}{5}\right) + C

Thus, 121x2+4x,dx=arcsin(x25)+C\int \frac{1}{\sqrt{21 - x^{2} + 4x}} , dx = \mathrm{arcsin}\left(\frac{x - 2}{5}\right) + C

Practice Questions

Practice Question
  1. Integrate: 1x2+4x+5,dx\int \frac{1}{x^{2} + 4x + 5} , dx
Practice Question
  1. Integrate: 196x+x2,dx\int \frac{1}{\sqrt{9 - 6x + x^{2}}} , dx

Glossary

  • Quadratic Expression: A polynomial of degree 2, generally written as ax2+bx+cax^2 + bx + c.
  • Completing the Square: A method used to rewrite a quadratic expression as a perfect square trinomial plus a constant.
  • Arcsin: The inverse sine function.
  • Arctan: The inverse tangent function.

Summary and Key Takeaways

Summary

  • Completing the square simplifies quadratic expressions and is a powerful tool in integration.
  • Standard integrals involving arcsin\mathrm{arcsin} and arctan\mathrm{arctan} can be used once the quadratic expression is transformed into the appropriate form.

Key Takeaways

  • Always convert the quadratic expression to a perfect square form.
  • Use standard integrals to find the antiderivative after completing the square.
  • Check your solution by differentiating to ensure accuracy.

Exam Tip

Completing the square is especially useful for integrals involving quadratic polynomials. Master this technique to handle a variety of integration problems effectively.

Common Mistake

Don't forget to adjust and compensate after completing the square, especially when dealing with coefficients in front of x2x^2.

Question 1 of 7

What is the completed square form of x2+4x+1x^2 + 4x + 1?

(x+2)23(x+2)^2 - 3

(x+4)215(x+4)^2 - 15

(x2)2+5(x-2)^2 + 5

(x4)2+17(x-4)^2 + 17